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A dissipative system absorbs ‘supply’, ‘globally’ over time and space.

¿¿ Can this be expressed ‘locally’, as

rate of change in storage + spatial flux supply rate

= supply rate + dissipation rate ??
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2



, for 1-D state space systems, the Kalman-Yacubovich-Popov
lemma.

Lyapunov theory for open dynamical systems, LMI’s, their
many applications.

applications in the analysis of open physical systems, synthesis
procedures, robust control, passivation control.
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Joint work with Harish Pillai (IIT, Mumbay)

& Harry Trentelman.

4



BEHAVIORAL SYSTEMS
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A system :=

the set of independent variables
time, space, time and space

the set of dependent variables
(= space where the variables take on their values,
signal space, space of field variables, )

: the behavior = the admissible trajectories
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for a trajectory we thus have:

: the model allows the trajectory
: the model forbids the trajectory

In this lecture, (‘n-D systems’) ,

often, , independent variables ,
solutions of a system of constant coefficient

linear PDE’s.

‘Linear (shift-invariant distributed) differential systems’.
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Example: Maxwell’s equations

(time and space),

(electric field, magnetic field, current density, charge density),
,

set of solutions to these PDE’s.
Note: 10 variables, 8 equations! free variables.
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n-D LINEAR DIFFERENTIAL SYSTEMS

the solutions of a linear constant coefficient system of PDE’s.

Let and consider

Define the associated behavior

holds

mainly for convenience, but important for some results.

Examples: Maxwell’s eq’ns, diffusion eq’n, wave eq’n,
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Notation for n-D linear differential systems:

or

Note

is called a ‘kernel representation’ of
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THE STRUCTURE OF
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PROPERTIES of

relation between and the submodules of

Elimination theorem: the behavior of a subset of the system
variables is also described by a PDE

Controllability; image representations

Observability

Work of Shankar/Pillai, Oberst.
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DESCRIBE ( ) IN MAXWELL’S EQ’NS ?

Eliminate from Maxwell’s equations. Straightforward
computation yields

Elimination theorem this exercise would be exact & successful.
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CONTROLLABILITY

Definition: is said to be

controllable

if
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In pictures:

.
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‘patches’ .

Controllability : ‘patch-ability’.

Special case: Kalman controllability for state space systems.
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CONDITIONS FOR CONTROLLABILITY

is called a kernel representation of ;

is called an image representation of

Elimination theorem every image is also a kernel.
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¿¿ Which kernels are also images ??

Theorem (Pillai/Shankar):

The following are equivalent for

1. is controllable,

2. admits an image representation,

...

18



ARE MAXWELL’S EQUATIONS CONTROLLABLE ?

The following well-known equations in the scalar potential
and the vector potential ,

generate exactly the solutions to Maxwell’s equations:

Proves controllability. Illustrates the interesting connection

controllability a potential!
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OBSERVABILITY

is said to be observable if can be
deduced from , i.e., if is injective.

¿¿ Controllability an observable image representation ??

For -D systems, yes!
For -D systems, not necessarily!

Non-example: Maxwell’s equations. Potential is not observable!
No potential ever is, for Maxwell’s equations.

For -D systems: image representation requires ‘hidden’ variables.
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DISSIPATIVITY
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Multi-index notation:

for

etc.
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QDF’s

The quadratic map in the variables and their partial derivatives,
defined by

is called quadratic differential form (QDF) on .

Here

(given matrices, only finite number ).
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Introduce the -variable polynomial matrix defined by

Denote this QDF as ; whence

A QDF is parameterized by a
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DISSIPATIVE DISTRIBUTED SYSTEMS

We consider only controllable linear differential systems and QDF’s.

Definition: , controllable, is said to be dissipative

with respect to the supply rate (a QDF) if

for all of compact support, i.e., for all .
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Idea:
rate of ‘energy’ delivered to the system.

Dissipativity

for all

A dissipative system absorbs net energy (integrated over space and
time).
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Examples:

Maxwell’s eq’ns:
dissipative (in fact, conservative) w.r.t. the QDF

Passive electrical circuits

Mechanical systems

Thermodynamic systems
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LOCAL VERSION

Assume that a system is ‘globally’ dissipative.
¿¿ Can this dissipativity be expressed through a ‘local’ law??

Storage + Spatial flux Supply.

STORAGE

FLUX

SUPPLY

DISSIPATION

Supply = Stored + radiated + dissipated
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for all ‘global dissipativity’

for all ‘local dissipativity’

: easy

: ¡¡ construct from and !!
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THE LOCAL DISSIPATION LAW
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Main Theorem: Let be controllable.
Then is dissipative with respect to the supply rate

iff
there exist

an image representation of , and
an vector of QDF’s

on , called the flux,
such that the local dissipation law

holds for all that satisfy
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As usual

Note: the local law involves
(possibly unobservable, - i.e., hidden!) latent variables (the ’s).
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When the variables are can be reformulated as:

an image representation of ,

a QDF , the storage, and
a vector of QDF’s, , the spatial flux,

such that

holds for all that satisfy

STORAGE

FLUX

SUPPLY

DISSIPATION
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EXAMPLE: ENERGY STORED IN EM FIELDS

Maxwell’s equations are dissipative (in fact, conservative) with
respect to the rate of energy supplied.
Introduce the stored energy density, , and

the energy flux density (the Poynting vector), ,

The following is a local conservation law for Maxwell’s equations:

Local version involves unobservable from and ,
the variables in the rate of energy supplied.
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IDEA of the PROOF

Consider , controllable, and .
allows an image representation .

Define . Note that

So we may as well study

for

instead of

for

work with , and ‘free’ signals .

WLOG:
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for all

(Parseval)

for all

(Factorization equation)

(easy)

(clearly)

for all
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THE FACTORIZATION EQUATION
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Consider

with given, and the unknown. Solvable??

with given, and the unknown.

Under what conditions on does there exist a solution ?

Scalar case: !! write as a sum of squares
.
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For and , solvable (for !) iff

for all

For , and , it is well-known (but non-trivial) that
this factorization equation is solvable (with !) iff

for all

For , and under these obvious positivity requirements, this
equation can nevertheless in general not be solved over the
polynomial matrices, for , but it can be solved over the
matrices of rational functions, i.e., for .
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This factorizability is a consequence of Hilbert’s 17-th problem!

Solve given

A polynomial with for
all can in general not be expressed as as a sum of
squares with the ’s (it can for ).

But a rational function (and hence a polynomial)
with for all
, can be expressed as a sum of squares, with the

’s , in fact, with .
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This solvability readily leads to solvability of the factorization
equation over for any .

The need to introduce rational functions (together with the image
representation) are the cause of the unavoidable presence of the
(possibly unobservable, i.e., ‘hidden’) latent variables in the local
dissipation law.
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CONCLUSIONS

a nice, algebraic, theory of linear shift-invariant differential
systems (PDE’s)

Controllability image representation

global dissipation local dissipation law

Involves hidden latent variables (e.g. applied to Maxwell’s
eq’ns)

The proof Hilbert’s 17-th problem

More info, ms, copy sheets? Surf to
http://www.math.rug.nl/ willems
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HAPPY BIRTHDAY, RUTH !
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